
i

HTML1st—A Lightweight Dynamic Web

by

Boyang Tang

Supervisor: Dr Sathiamoorthy Manoharan

BTech 451 Mid-Report

Tamaki Campus
Department of Computer Science

The University of Auckland
New Zealand

June 2016

ii

Abstract

The BTech 451 course is one-year term project of BTech (Information Technology)

degree, where the four year degree offered by Department of Computer Science and

taught at University Of Auckland. This degree covers not only Computer Science and

Information System papers but also contains some business and management courses. As

the most important course of this degree, BTech 451 occupies 45 points of full year

credits and it is split up into two parts, BTech 451A (15 points) for first semester and

BTech 451B (30 points) for second semester. My project is intended to build a light-

weight C# engine that handles Server-side Scripting, the engine will convert HTML page

embedded C# code fragments to pure HTML page. This middle year report will illustrate

what tasks I have done and what problems still exist, also summarize the findings during

actions taken through the first part of course, merging cells step by step into a conclusion,

meanwhile, give an expected plan of next semester.

iii

Acknowledgments

I would like to express my very great appreciation to my academic supervisor
Dr. S. Manoharan for his patient guidance and encouragement. I would also like to thank
all those who provide valuable and constructive suggestions in completing the project and
writing this report. Last but not least, many thanks to my parents for their supports.

Boyang Tang
 Auckland
 June 6, 2016

iv

Contents

Abstract ii
Acknowledgements iii

Contents iv

1 Introduction 1
1.1 Project Overview. 1
1.2 Expected Outcomes 2
1.3 Report Structure. 3

2 Project Basics 5
2.1 Programming Knowledge Overview . 5

2.1.1 C# .NET. 5
2.1.2 .NET Framework . 6
2.1.3 Difference between Framework and Library 8

2.2 Reflection and Dynamically Loading 10
 2.2.1 Reflection in .NET 10
 2.2.2 Dynamically Loading Assembly 13

3 HTML1st Design 15
3.1 Scripting Language. 15

3.1.1 Scripting Language Overview. 15
3.1.2 Client-Side Scripting. 17
3.1.3 Server-Side Scripting. 18

3.2 Treating C# like A Scripting Language. 21
3.3 HTML Parser. 24

3.3.1 HTML Agility Pack. 24
3.3.2 Processing Instruction .26

4 Conclusion 28

1

Chapter 1

Introduction

This section will give an overall introduction of my project, it illustrates the goal that my
project is designed for, and what do I hope to gain from this project, and then conclude
the report pattern.

1.1 Project Overview

As so far, the html parser has been widely used in collecting specific data from the
intended HTML sources, where these data would motivate the subsequent development
activities. With the rise in requirements of acquiring dynamic information, it is becoming
essential to build an efficient and effective engine that can satisfy this attempt, however,
my project is to create a light-weight C# engine that can handle two main functional
domains which are parsing HTML files and converting a HTML file with embedded C#
code fragments to a pure HTML file.

We want to have C# function calls within <? ... ?>, here is a very simple example that
shows the expected ability of this C# engine.
E.g.,

 Figure 1.1: sample input of the HTML file.

Chapter 1. Introduction

2

Assuming the call GetGreeting() returned "Boyang", and the call DateTime.Today
returned current date and time.

Figure 1.2: sample output of a HTML file.

This illustrates HTML pages with some embedded C# fragments and these fragments will
be replaced by the output of running these fragments.

1.2 Expected Outcomes

--Enhance individual programming skills and formal report writing skills.
--Enhance my collaborative abilities of working one-on-one with supervisor.
--Sharpen my critical and analytical thinking skills.
--Gain individual research skills.

Chapter 1. Introduction

3

1.3 Report Structure

The remainder of this report will explain some details as follows: the chapter 2 will
explain project basics which contains the program language, language Framework and
some powerful feature given by that framework. The chapter 3 explains serval aspects of
project development. And the last chapter will describe the project work done so far and
make a plan for further work in the semester two.

Chapter 1. Introduction

4

5

Chapter 2

Project Basics

This section will introduce the basic knowledge and background of my project, it contains
the program language, framework and some powerful features or functionality that
provided by which framework.

2.1 Programming Knowledge Overview

2.1.1 C#.NET

First of all, C# programming language is a modern language created by Microsoft and it
is same as VB.NET, Managed C++, and F# which is a part of .NET languages that
capacitate developers to build a diverse range of applications which run on the .NET
Framework [1]. Based on acknowledge of C, C++ or Java programming language, it is
not hard to recognize similarities of syntax among these languages. However, compared
to C++, C# is able to reduce the time that may be taken by users to employs it during
development processes due to optimizing the complexities of syntax. In addition, some
incredible useful functions which cannot be found in Java while provided by C# such
like nullable value types, enumerations, delegates, lambda expressions and direct
memory access [2]. Furthermore, some other advantages such as C# supports generic
methods and Language-Integrated Query (LINQ) expressions, which means the former
convenience facilitates the implementations of specific collection behaviours and the
latter one improves the time mobility of developers during writing code.

5

Chapter 2. Project Basics

6

2.1.2 .NET Framework

The .NET Framework is a software technology created by Microsoft that enables C#
programs to run on it. Once you install .NET Framework, it creates a type-safe and
object-oriented programming environment which supports developing and running a
branch of various applications and XML Web services. The attempt of .NET Framework
is not only to provide a capability of orderly accessing code database and Web-based
applications but also to afford an interoperability of serval programming languages,
which means a consistent code-execution environment is possible to minimise
versioning conflicts.

Based on studies of [3], the .NET Framework is combined of two fundamental
components which are Common-Language-Runtime (CLR) and Framework-Class-
Library (FCL). The CLR is used to compile and run applications, beyond that, it is also
used to manage .NET code, memory, exceptions, debugging, code safe verification, and
other services. And the FCL is a myriad of predefined classes or reusable types that you
can use to define object properties in your programs, these classes provide runtime
functionality which can be derived when managing your own code, additionally, other
database interactions and features given by FCL make it possible to employs .NET
Framework types more efficiently. Third-party libraries or source code produced by
programmers also can be merged seamlessly into .NET Framework.

Once the programme source code written in C# is compiled, then a managed assembly or
executable file is generated with an extension of .exe or .dll which are stored on the disk.
After that, when the C# program is executed, the assembly is load into CLR, and then if
the requirements of security features are satisfied completely the CLR would convert it
to native machine instructions. The following figure shows the interactions among .NET
Framework, assemblies, the CLR, and the FCL in compile-time and run-time of C#
programs.

Chapter 2. Project Basics

7

Figure 2.1: .NET Framework Platform Architectural [2]

There are some further information for deeper understanding .NET Framework which
given by [4]. In brief, the .NET Framework is integrated by Common Language Runtime
and Framework Class Library, the primary principle concerning a natural phenomenon
of runtime can be regarded as code management. To be more specifically, the .NET
Framework can not only be hosted by managed components but also unmanaged or
third-party runtime hosts, take ASP.NET for instance, it is an example of a managed
application whereas the Internet Explorer is an example of an unmanaged application.

The following diagram illustrates the connections between CLR and FCL to the whole
system and shows how managed and unmanaged applications implemented in a bigger
architectural model.

Chapter 2. Project Basics

8

Figure 2.2: Overview of .NET Framework [4].

2.1.3 Differences between Framework and Library

The last thing I would like to finish on is the difference and relation between library and
framework. Actually, the library is a collection of predefined classes which have been
written by other programmers, a library gives a lot pieces of functionality that you may
pick up and choose from. Whereas, typically framework is more complicate than library,
it introduces an architecture that your application will follow. The design decisions and
code structure are based on what framework you choose, which means once a framework
is chose then your code will be called by the framework appropriately. In fact, it is more
likely to regard the framework as a top level which is centred by many libraries.
Basically, “Inversion of Control” is the core difference between a framework and a
library, the following diagram shows control in different ways.

Chapter 2. Project Basics

9

Figure 2.3: Library vs. Framework [5].

Chapter 2. Project Basics

10

2.2 Reelection and Dynamically Loading

2.2.1 Reflection in .NET

Reflection is a functionality that enables computer program to fetch type (assembly) at
runtime, which means it is able to estimate and modify the structure and behaviours of
the program that cannot be achieved at compile time. There is a list of useful classes
given by System.Refelction namespace that allows you to collect information within
assemblies, the information could be types, properties, methods and so on. Additionally,
all types such like types of classes, types of interfaces, and value types can be acquired
from loaded assemblies by using System.Type. .NET Reflection makes it possible to
dynamically create an instance of a type, bind the type to an existing object, or get a
type of existing object. In the next you can invoke the type’s methods or access its
fields and properties [6].

Currently, in my project, the embedded functional fragments extracted from HTML file
will be merged into a single C# file, which is named “MyOwnMethods.cs” or any other
proper names, my project will be presented as a Command-Line program, here is a
Command:

When running the program, the code in MyOwnMethods.cs will be loaded as assembly,
the program CAR will compile the code therein, and then run it. In this case, in order to
replace the embedded code fragments by the output of running these fragments, .NET
Reflection allows you to invoke the type of existing object in this C# file as well as
invoking the type’s methods at runtime.

Chapter 2. Project Basics

11

As we know, in .NET Reflection the combination of System.Refelction namespace and
System.Type class allows you to reflect over many other aspects of a type. Before using
Reflection, it is important to know what these two are made of, the following figure
shows a road map of .NET Reflection.

Figure 2.4: .NET Reflection Road Map [7].

According to above road map, there are some commonly used classes such as
Assembly, Module, InterfaceInfo, ParameterInfo, and MethodInfo and so on. The
details about abilities of them are shown below:

12

Figure 2.5: Class Description.

In the other hand, the Type class represents a type in the Common Type System
(CLS), and it is more capable of accessing metadata as well as representing type
declarations. The type information can be obtained from type declarations such as
class types, value types, interface types, and enumeration types through three ways.
First of them is System.Object.GetType(), this method can only be achieved when
you have compile time knowledge of the type, and it will return a Type object that
on behalf of the type of an instance.

13

The second approach is System.Type.GetType(), this is more flexible than former
one, which means this way enables you to get a type with particular parameters and
the last one is C# typeof operator. The Figure 2.6 is the outline of these methods.

Figure 2.6: Obtaining Type Information [7].

2.2.2 Dynamically Loading Assembly

In .NET Framework, dynamic assemblies loading can be regarded as an advanced
topic of Reflection. Dynamically loading libraries is widely used in programming,
this functionality is presented by using Dynamic Link Library (DLL) in native C#.
This capability makes the applications become more modifiable, which means it is
able to add some specified features to existing computer program or modify them at
runtime without need to re-compile them again. Likewise, dynamic assembly
loading is another powerful tool provided in .NET Framework.

14

Dynamically loading can only occur when there is a medium for communication
between applications and assembly components. This can be realized with the use of
a commonly agreed interface, the content of interface can be changed not until
entire lifecycle is over, since any change of the interface will cause whole
application and all components to be completely recompiled [7].

In detail, based on .NET Framework, once the application has been created, then we
can dynamically load assemblies, where these assemblies could contain more one
class which implement interface, however, the application has no visibility of the
classes implemented in assemblies, thus, the interface between an application and
assemblies builds a bridge for them. The Figure 2.8 shows the relationship.

Figure 2.8: Dynamically Loading.

15

Chapter 3

HTML1st Design

This section will discuss several core parts of HTML1st development.

3.1 Scripting Language

3.1.1 Scripting Language Overview

Scripting languages or scripts are sometimes considered as high-level
languages. By comparing scripting and normal programming, scripts are interpreted
while programs are compiled, which means they are executed in different ways. To be
more specifically, the scripts are interpreted by another program at runtime, where these
scripts are distinct from the core language used in that application, they are probably
written in different languages [10].

Scripting languages make it possible to integrate and communicate with other
programming languages, take dynamic Web pages for instance, JavaScript is one of
mostly used client-side scripting languages, which is usually embedded within HTML, it
enables you add extensive capabilities to Web pages, in this case, Web pages become
more flexible. Additionally, there are some other commonly used scripting languages
such as PHP, ASP, JSP, Perl, Python, and Ruby and so on [8].

In recent years, there is a trend to develop an application by using the conjunction of
scripting languages and system programming languages, each of them can be looked as a
complement of another one. Scripting language is more likely to be designed for gluing
[9], the attempt of glue language is to connecting the software components with scripts.
Another very powerful feature of the scripting languages is typeless, which means an
instance and hold a variable type at one moment and another the next.

Chapter 3. HTML1st Design

16

In my project, there is a step that using C# program to compile the C# code fragments
extracted from HTML pages, where those fragments are scripts. Typeless enhances the
ability of scripting languages that allows data and code to be interchanged, so that the
HTML1st engine can execute the fragments as another program on the fly.

 In the end, it is essential to talk about a set of trade-offs that exist in scripting languages.
With the increasingly wide use of scripting languages in such fields like: graphical user
interfaces (GUI), Internet, and framework components. For example, a growth of the
Internet interactions have been realized by scripting languages, as the scripting
technology makes it easier to exchange things between database and web browser. It is
really efficient and attractive when application is large and complex [9]. Moreover,
scripting languages are easy to learn and use, it allows you to manipulate dynamic
activities and modify stuff that are already done. An interactive web page can be created
by user with less effort, which improves the speed of communicative response.
Furthermore, scripting languages strengthen the productivity of developers and reuse of
components. In contrast, it is more time-consuming due to scripts are interpreted at
runtime and bot compiled into machine code, meanwhile, the security concerns cause the
inconsistent distribution.

Chapter 3. HTML1st Design

17

3.1.2 Client-Side Scripting

 Traditionally, the Web browser is a client-side environment that allows scripts to run on
the end users’ computers. Suppose there are some dynamic or custom web contents need
to be presented on someone’s computer, but a beautiful Web page only consists of
HTML without any scripts, the page cannot do anything but just sit there. Scripts
facilitate the ability that web pages can have varying and changing content depending on
user inputs. The best solution for interaction between end users and web pages is client-
side scripting. Sometimes, documents produced after running server scripts, which
contains some client-side scripts, then they are delivered to the user’s computer over
internet and run directly in the browser, the only requirement at client-side is the
browser understands what theses scripts mean [12].

 Usually, client-side scripts are embedded in a HTML or XHTML document, which is
designed to create instructions for the browser to follow in response to user actions such
as window or menu display, button or mouse events or keyboard typing. As we know,
the most popular client-side scripting language is JavaScript, this language is a member
of object-oriented languages. Within web browser, the aim of JavaScript is to manipulate
the elements on a web page and control behaviours such like the occurrence of an event.
Although, the JavaScript is easy to learn and understand, but before we start using it, we
need to be aware of its connections with HTML. The elements in the HTML document
are constructed in Document Object Model (DOM), this structure is presented as s
hierarchical architecture style. And this structure is applied to organize the objects of a
web content (see Figure 3.1). However, different DOMs give different flexibility levels
to design a web page when you implement JavaScript.

Figure 3.1: Simple hierarchy of DOM [11].

Chapter 3. HTML1st Design

18

Compared to server-side scripting, the client-side scripting works in the front of a
website, user can see whatever the Client-side code have done and the stuffs have been
presented out. Once the document has been transferred from back-end, if there is no
additional requests in response to Web server, the specified contents of code will be
processed by browser in an isolated circumstance until a new request was sent back to
the server. In this case, the immediately interactive communication between the Web
browser and end users has speeded up sharply. In the front-end web development, the
Client-side scripting languages is a mix use of HTML, JavaScript, and cascading style
sheet (CSS), where the CSS is a file that applied to style the way the page looks.
Additionally, there are varying kinds of JavaScript Frameworks such like AngularJS,
JQuery, Node.js, and AJAX.

3.1.3 Server-Side Scripting

In contrast to Client-side scripting, the Web server provides an environment that allows
a Server-side scripts to run whenever a user’s request is received. Usually, there are
database or data stores on the server side, the primary advantage to Server-side scripting
is granting permission for accessing the database when specified information required by
users. In other words, a dynamic web page can be generated by running scripts on
Server-side based on custom requirements. The whole web development is a client-
server system, any web browser resides on a computer can be regarded as a client and
the web pages which have been requested will be sent back to the client [15]. This
process can be shown as following diagram:

Figure 3.2: Client-Server System [14].

Chapter 3. HTML1st Design

19

This diagram shows that client can only require static web pages from the server, but
these days most websites on the Internet have dynamic contents, the common gateway
interface (CGI) provides a functionality that enables the web server to run the scripts
and automatically process a set of instructions. Typically, a dynamic page would have
an extension such as .cgi or .php.

Once a request with one of these extensions, it will be delivered from the web server
to CGI, and then the scripts will be correctly interpreted and executed. At last, the
standard HTML page will be sent back to the client, the end user’s browser only needs
to worry about what results are presented to users rather than the underlying script
used to generate this web page [14]. The following diagram shows the extensive
ability of web server:

Figure 3.3: CGI with Web Server [14].

In the development of back-end, there consists three core parts: server, database, and
APIs, where the APIs structure how data is exchanged between a database and any
software accessing it. The server can be any remote powerful computer located at
anywhere. And there is a back-end software written by back-end web developers via
server-side scripting languages. Then, a fast and secure channel has been created for
exchanging information among user, server, and database. Server- side scripts process
requests and pull what they need from the database, then update information for the
end users. For instance, if user want to see his (or her) online banking details, after
login step, the request is sent to server, the server-side scripts will interact with the
database to collect the specified account information the user needs, then process it on
the server, at last, the dynamic page will be updated and sent back to browser.

Chapter 3. HTML1st Design

20

In my project, the C# engine could be looked as the software on server side to build
your website behind screen, using it to parse HTML pages and figuring out embedded
C# code fragments within it, we should treat them as scripting language, it is more
likely to using the C# engine to compile C# scripts and then execute them. Eventually,
a pure HTML page will be collected and render it into a human viewable website.

There are some popular server-side languages such as PHP, C#, Ruby, C++, Java, and
Python, and their Frameworks such like Ruby on Rails, ASP.NET, Django, and
Node.js: JavaScript. In conclusion, the Web development is combined of front-end
and back-end development, any website should base on three components: the server,
the client, and the database, the following two diagrams illustrate an overview of
client-side and server-side working flow:

Figure 3.4:Front-End Development [13].

Figure 3.5: Back-End Development [16].

Chapter 3. HTML1st Design

21

3.2 Treating C# like A Scripting Language

In my project, C# code fragments embedded in HTML page are very simple, most of
them are exact some functions or methods with a parameter, the problem here is how we
can process them. Suppose there has a single file that contains all the functions which
are embedded in HTML file, I wonder if it is possible to look them as a scripting
language, then they can be interpreted at runtime. As a consequence, we can dynamically
manipulate and modify the code during runtime.

What I found was that C# does indeed have the capability to accomplish this task, it
allows you to load C# from anther file and execute them therein. However, it is a little
bit more complicated in this case due to the C# is a complied language, the code needs to
be compiled into an assembly before using it. Once the C# code fragments are loaded as
an assembly, then we can invoke a type of existing object and invoke the type’s methods
at runtime by Reflection in .NET Framework.

 It is likely to use C# to compile C#, this powerful feature is provided by .NET
Framework in Microsoft.CSharp and System.CodeDom.Compiler namespaces without
any third-party libraries [17].

For compiling the C# code on the fly at runtime, there are several core steps you need to
follow:

1. To programmatically compile your code you need to create a C# compiler, the Figure
3.6 shows the compiler created by using an instance of CSharpCodeProvider class:

Figure 3.6: C# compiler.

Chapter 3. HTML1st Design

22

2. Then you can create parameters of the compiler by using an instance of
CompilerParameters class, which contains a set of parameters that will be passed to
compiler when compiling your code, additionally, you can also define whether your
code will be generated only in the memory or into the DLL or EXE file (see Figure 3.7).

Figure 3.7: Parameters.

3. Define the parameters, you can add any library to your compiler by using
parameters.ReferenceAssemblies.Add();

4. Compile your assembly: CompilerResults results
=provider.CompileAssemblyFromSource(parameters,SourceString);

5. Check errors and use the compiled code, once your code has been compiled into an
assembly, you can use that assembly to create instances of classes from your source code
and use reflection to invoke methods and get or set properties of those classes.

Chapter 3. HTML1st Design

23

Here is a small demo program of this part:

Figure 3.8: using C# compile C#.

Output:

Chapter 3. HTML1st Design

24

3.3 HTML Parser

3.3.1 HTML Agility Pack

The aim of HTML parsing is to extract some useful and powerful information from an
HTML document for further useable fields. However, the HTML is an irregular
language, it is crucial to find a way that easily read and modify the HTML string code,
which means it is able to identify the format and syntax of a string of symbols, in other
words, it is a syntactic analysis of HTML documents following rules or a formal
grammar. HTML Parsers is such a tool to accomplish this kind of tasks, and they can be
presented as a computer program or a library given by a Framework.

 A HTML parser can be written in any popular language, but in my project, it is to find
an appropriate way to parse HTML using C#. What I found was the most widely used
and efficient way named HtmlAgilityPack, this pack is a .NET code library that allows
you to parse a real-world HTML and it is very tolerant in handling elements, text,
attributes, and other markups within HTML even the format is invalid.

In fact, HTML is a structured document format with a varying kinds of very clearly
defined rules. Basically, you can create a C# application to parse a HTML page with
regular expressions, but it seems more efficient when you use a DOM-based approach
with a functionality such as LINQ (or XPath) [18]. .NET Framework provides an
HtmlDocument class, along with HtmlElement, which allows you to access data by
calling DOM methods such like GetElementById and GetElementByTagName.
However, there is no such a constructor when you build an instance of HtmlDocument,
even if you can use XmlDocument and XmlNode to read from or write to XHTML
documents, it also needs a third-party library to check the validity of format and the
correctness of markup [19].

HTML Agility Pack is a free and open source library whose attempt is to load the
HTML from either a file or a remote website, and then parse it. The HtmlDocument and
HtmlNode classes are provided by HtmlAgilityPack, the capabilities of these classes are
quite similar to that of XmlDocument and XmlNode classes. One attractive feature of
HtmlAgilityPack is that it constructs a Document Object Model (DOM) view of the
HTML document being parsed, which makes programmers easier to read through the
documents and move from parent nodes to their child nodes. Secondly, there is no need
to check markup validity due to HtmlAgilityPack will take care of making everything
valid by closing unclosed tags and fixing other markup errors. Moreover, the
HtmlAgilityPack allows you to return or retrieve specified nodes through the use of
XPath expressions [19].

Chapter 3. HTML1st Design

25

The figure 3.9 shows example for parsing with the use of HtmlAgilityPack:

Figure 3.9: Parsing with HtmlAgilityPack.

A more efficient way with the use of XPath expressions:

Figure 3.10: XPath expressions.

Chapter 3. HTML1st Design

26

3.3.2 Processing Instruction

Processing Instructions are special tags with instructions to software applications, which
are in an SGML and XML node type. An XML processing instruction is enclosed within
<? and ?>, it is typically composed of a target and some string value. The most common
use of a processing instruction is to represent a XML style sheet at the beginning of an
XML document: <? xml-stylesheet type=”text/xsl” href=”style.xsl” ?> . Sometimes, the
same syntax has been used in a XML declaration: <? Xml version=”1.0”
encoding=”UTF-8” ?>, but this is not a processing instruction [20].

It was great to find out code fragments embedded in HTML file could not be simply
looked as elements or attributes of a node, since the functions take place within symbols
“<?” and “?>”, for instance, <? Function(); ?>, we should regard them as Processing
Instructions (PIs). Then, we need to check whether the HTML Agility Pack can identify
Processing instructions or not. Meanwhile, check to see if HTML Agility Pack can
ignore the set of pseudo-strings using same syntax during parsing documents.

Firstly, I have modified the sample input of an HTML file, following figure shows a
simple html file embedded with some PIs:

Figure 3.10: PIs.

Chapter 3. HTML1st Design

27

Where the “xxx” is a target of the Processing Instruction, it can be named according to
your purpose of each function. Unfortunately, HtmlAgilityPack has no such an ability to
identify Processing Instructions which are embedded in the HTML documents. So under
this situation, then we can probably treat HTML as XML and use an XML parser to
Identify Processing Instructions. As the Processing Instructions are exposed in the
Document Object Model (DOM), thus, you can use an XPath expression to get PIs with
the ‘processing-instruction ()’ command. After a long process of trial, I found that a well
formatted HTML file cannot be parsed by a XML Parser without exceptions, as the
HTML and XML are not possible to be regarded as same thing under this condition.

28

Chapter 4

Conclusion

This section will give a conclusion to current studies of my project and also conclude a
plan for further work in the next semester.
As so far, based on the knowledge of Reflection in .NET Framework and awareness of
Scripting languages, I have successfully built a small C# program, and use it to load an
assembly that contains some C# code fragments, and then execute them as part of my
program, it does invoke a type’s method at runtime. Additionally, I made another
assembly which is just a dynamic link library that contains some powerful functionalities,
and link it to my program at runtime. Moreover, I have found a good C# parser called
HTML Agility Pack, which is code library given by .NET, but it has a limitation on
identifying Processing Instructions (PIs), currently, I still have not found a solution to
make a breakthrough. The key problem needs to be addressed in the next semester is to
fix the above issues that I have talked about, I suppose there may have two ways: create
an own HTML parser based on current ones or introduce a new tag like <source> into
HTML instead of enclosing the C# fragments within <? ?>.

29

Bibliography

[1] C# and .NET Programming https://msdn.microsoft.com/en-
us/library/orm-9780596521066-01-01.aspx#

[2] Introduction to the C# Language and the .NET Framework
https://msdn.microsoft.com/en-us/library/z1zx9t92.aspx

[3] .NET https://www.microsoft.com/net

[4] Overview of the .NET Framework https://msdn.microsoft.com/en-
us/library/zw4w595w(v=vs.110).aspx

[5] Library vs. Framework?
 http://www.programcreek.com/2011/09/what-is-the-
differencebetween-a-java-library-and-a-framework/

[6] Introduction to Reflection API
https://dotnetcademy.net/Learn/4/Pages/1

[7]Reflection in .NET

 http://www.csharpcorner.com/uploadfile/keesari_anjaiah/reflection-

in-net/

[8] Scripting language
http://searchwindevelopment.techtarget.com/definition/scripting-
language
[9] J. K. Ousterhout, "Scripting: Higher level programming for the 21st
century," Computer, vol. 31, no. 3, pp. 23–30, Mar. 1998.

[10] Scripting language From Wikipedia
https://en.wikipedia.org/wiki/Scripting_language

[11] JavaScript – Document Object Model or DOM
http://www.tutorialspoint.com/javascript/javascript_html_dom.htm

[12] Understanding Client-side Scripting
http://www.pcmag.com/article2/0,2817,1554984,00.asp

[13] Client-Side Web Development: How Scripting Languages Work
https://www.upwork.com/hiring/development/how-scripting-
languages-work/

https://msdn.microsoft.com/en-us/library/orm-9780596521066-01-01.aspx
https://msdn.microsoft.com/en-us/library/orm-9780596521066-01-01.aspx
https://msdn.microsoft.com/en-us/library/z1zx9t92.aspx
https://www.microsoft.com/net
https://msdn.microsoft.com/en-us/library/zw4w595w(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/zw4w595w(v=vs.110).aspx
http://www.programcreek.com/2011/09/what-is-the-difference-between-a-java-library-and-a-framework/
http://www.programcreek.com/2011/09/what-is-the-differencebetween-a-java-library-and-a-framework/
http://www.programcreek.com/2011/09/what-is-the-differencebetween-a-java-library-and-a-framework/
https://dotnetcademy.net/Learn/4/Pages/1
http://www.csharpcorner.com/uploadfile/keesari_anjaiah/reflection-in-net/
http://www.csharpcorner.com/uploadfile/keesari_anjaiah/reflection-in-net/
http://searchwindevelopment.techtarget.com/definition/scripting-language
http://searchwindevelopment.techtarget.com/definition/scripting-language
https://en.wikipedia.org/wiki/Scripting_language
http://www.tutorialspoint.com/javascript/javascript_html_dom.htm
http://www.pcmag.com/article2/0,2817,1554984,00.asp
https://www.upwork.com/hiring/development/how-scripting-languages-work/
https://www.upwork.com/hiring/development/how-scripting-languages-work/

30

[14] Introduction to server-side scripting
http://www.pythonschool.net/server-side-scripting/introduction-to-
server-side-scripting/

[15] Server-side Scripting
http://www.seniornet.org/php/images/webximages/docs/Guide/pages/
sss-01-intro.html

[16] Server-side Scripting: Back-End Web Development Technology
https://www.upwork.com/hiring/development/server-side-scripting-
back-end-web-development-technology/

[17] Matthew Ephraim “Treating C# Like A Scripting Language”
http://mattephraim.com/blog/2009/01/02/treating-c-like-a-scripting-
language/

[18] Parsing HTML documents with the Html Agility Pack
http://www.4guysfromrolla.com/articles/011211-1.aspx

[19] Easily Parse HTML Documents in C#
http://blog.olussier.net/2010/03/30/easily-parse-html-documents-in-
csharp/#more-32

[20] Understanding Processing Instructions in XML
http://www.xmlplease.com/xml/xmlquotations/pi

http://www.pythonschool.net/server-side-scripting/introduction-to-server-side-scripting/
http://www.pythonschool.net/server-side-scripting/introduction-to-server-side-scripting/
http://www.seniornet.org/php/images/webximages/docs/Guide/pages/sss-01-intro.html
http://www.seniornet.org/php/images/webximages/docs/Guide/pages/sss-01-intro.html
https://www.upwork.com/hiring/development/server-side-scripting-back-end-web-development-technology/
https://www.upwork.com/hiring/development/server-side-scripting-back-end-web-development-technology/
http://mattephraim.com/blog/2009/01/02/treating-c-like-a-scripting-language/
http://mattephraim.com/blog/2009/01/02/treating-c-like-a-scripting-language/
http://www.4guysfromrolla.com/articles/011211-1.aspx
http://blog.olussier.net/2010/03/30/easily-parse-html-documents-in-csharp/%23more-32
http://blog.olussier.net/2010/03/30/easily-parse-html-documents-in-csharp/%23more-32
http://www.xmlplease.com/xml/xmlquotations/pi

31

	BTech 451 Mid-Report
	Contents
	Chapter 1
	1.1 Project Overview
	1.2 Expected Outcomes
	1.3 Report Structure

	Chapter 2
	2.1 Programming Knowledge Overview
	2.1.1 C#.NET
	2.1.2 .NET Framework
	2.1.3 Differences between Framework and Library

	2.2 Reelection and Dynamically Loading

	Chapter 3
	3.1 Scripting Language
	3.1.1 Scripting Language Overview
	3.1.2 Client-Side Scripting
	3.1.3 Server-Side Scripting

	3.2 Treating C# like A Scripting Language
	3.3 HTML Parser
	3.3.1 HTML Agility Pack
	3.3.2 Processing Instruction

	Chapter 4

	Bibliography
	[2] Introduction to the C# Language and the .NET Framework https://msdn.microsoft.com/en-us/library/z1zx9t92.aspx
	[7]Reflection in .NET
	http://www.csharpcorner.com/uploadfile/keesari_anjaiah/reflection-in-net/

